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Topology of singularities in the A, phase of superfluid 3He 
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Received 12 September 1977, in final form 28 November 1977 

Abstract. The topological classification of point and line singularities in the A, phase of 
superfluid 3He is studied in both strong and weak magnetic fields and in both large and 
small volumes. Particle-like solutions are also discussed briefly. 

1. Introduction 

Line singularities (disgyrations) in the A phase of superfluid 3He with 1 = 6 or 1 = c$ 
were originally suggested by de Gennes (1973). More recently, point singularities in 
the A and B phases with the 1 or n vector in the radial direction i (‘hedgehogs’) have 
been suggested by Anderson and Brinkman (1975), Blaha (1976), Hu et a1 (1976) and 
Maki (1977). Topological discussions of these A- and B-phase singularities have been 
given by Volovik and Mineev (1977a, b), Toulouse and Kltman (1976) and Cross and 
Brinkman (1977), so that it is possible to tell which textures are topologically 
equivalent and which are forbidden to decay into one another by a topological 
conservation law. However, this kind of argument does not enable us to know which 
textures exist as local minima of the free energy. A study of which of these singulari- 
ties exist as local minima of the free energy has been made by Bailin and Love (1978) 
for the A, B and AI phases, in the case of bulk superfluid (dimensions >> 

We would like to emphasise that whereas the topological arguments can tell us, for 
example, whether the A phase ‘hedgehog’ 1 = ? is a true point singularity (which it is 
not) they can not tell us whether it exists or not. This sort of argument can however 
provide us with other kinds of information not obtainable from the more detailed 
minimisation of the free energy. For instance, it can tell us whether two singularities 
can annihilate each other to produce the uniform texture, and which textures are 
prevented from decaying into another texture by a topological conservation law, and 
which only by a potential barrier. In the present paper we extend the topological 
arguments of earlier authors to the AI  phase. 

In 0 2, the topological properties of AI phase singularities are discussed for the 
case of small volumes of superfluid (negligible dipolar interactions) in small and large 
magnetic fields. In 0 3, a similar discussion is given for the case of bulk superfluid 
(important dipolar interactions) in small and large magnetic fields, and particle-like 
textures are also discussed. Section 4 contains our conclusions. 

cm). 
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2. Topology of singularities in small volumes of superfluid 

The application of topological ideas to the study of textural singularities has been 
described by Toulouse and KlCman (1976), by Cross and Brinkman (1977) and, in 
great detail, by Volovik and Mineev (1977a, b). 

Three steps are involved. First, it is necessary to discover the topological space of 
order parameters under discussion. Second, the topologically inequivalent paths and 
surfaces traced out in order parameter space, as we go round a circle or over the 
surface of a sphere in real space, have to be studied, to classify line and point 
singularities, respectively. To do this the first and second homotopy groups for 
mappings from real space to order parameter space have to be calculated. Third, the 
topological quantum numbers of typical singularities have to be identified. 

In the A1 phase of superfluid 3He the order parameter is of the form (see, e.g., 
Leggett 1975) 

A,i = /Id,& (2.1) 

where A is the magnitude of the order parameter and is fixed by the bulk term in the 
free energy, 

is a vector in ordinary space with a1 and a 2  real mutually orthogonal unit vectors 
related to the 1 vector by 1 = a1 x a ~ ,  and 

(2.3) 
1 

d =  (Pl+iPd 3 
is a spin-space vector with PI and P2 real mutually orthogonal unit vectors. Since we 
consider samples of superfluid with small dimensions ( K  cm) in this section, we 
may neglect the orienting effect of dipole-dipole interactions. This effect is studied in 
§ 3. 

Consider first the case where the magnetic field is also negligible. (This is a very 
difficult case to realise experimentally, since the Ai phase does not exist in zero 
magnetic field and has a small width in temperature in small magnetic fields.) Then, 
the general order parameter is obtained by independently choosing an orientation for 
the triads of axes (a1, az, a1 X (YZ) and (PI, Pz, PI X Pz). This may be done by rotating 
each triad from a starting position @,E, 2), and at first sight the space of allowed order 
parameters is that of SO(3) x S0(3), since we may write 

J%f=R1(5+iy^) J ~ A  = R2(f + iy* j, 

where R I ,  RZ are arbitrary independent rotations. However, this involves some 
double counting since the order parameter AWi is the product of d, and Ai and d,Ai is 
the same as (e-'"d,)(e'"Ai) for any real a. Now 

&e-'"d = R1R2(a)(f+iy*) 

&e'"A = RzRZ (- a) ( i  + ig), 

where R'(a)  is a rotation about the z axis by a. Thus the space of order parameters 
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A,i is the set R of all left cosets of the St subgroup 

SI= { (RZ(a) ,  RZ( - a)):  0 c a < 2 T )  

of 

SO(3) X SO(3) = {(RI, R2): R 1, R2 E SO(3)). 

Then we write 

R = SO(3) X so(3)/s1,  

and since SI is a closed subgroup of the Lie group S0(3)xS0(3)  it follows that 
SO(3)xSO(3) is a principal fibre bundle with group SI. It follows that the homotopy 
groups T,(R) belong to an exact sequence of homomorphisms (see below), and may 
therefore be calculated, knowing the homotopy groups of SI and SO3. (The method is 
described by Volovik and Mineev (1977a, b).) 

Consider the slightly more general case 

R = H/Si (2.5) 
where H is a principal fibre bundle with group SI, and the homotopy groups of H are 
known (by using T,(A x B) = T, (A)+  T,(B) etc). This is the most general case we 
shall have to consider in the present work. The sequence of homomorphisms 

B 6 
T2(Sl)’r2(H)’T2(R): Tl(Sl)+ Tr(H)Z TI@)+ T O ( S 1 )  

is exact, i.e. the image of any homotopy group in the sequence is the kernel of the 
subsequent mapping. Since 772(S1) = .rr0(S1) = 0 and ~ l ( S 1 )  = 2, and for all the cases 
we shall consider r 2 ( H )  = 0, the sequence is 

6 
0 + T2(R)+ 2 + T l ( H ) Z  T l (R)+ 0.  (2.6) 

Information may be extracted from this sequence using the theorem that the image of 
any homotopy group in the sequence is the quotient group of that homotopy group 
with the kernel of the mapping, together with the definition of an exact sequence of 
homomorphisms. So 

and 

ri(W/Pz = y ~ i ( H ) =  (2.9) 
(noticing that the kernel of the mapping S is r l (R)) .  In these equations the equality 
sign means isomorphism. Since, from (2.8), a ~ 2 ( R )  is a subgroup of 2, the possi- 
bilities are 

a r z ( R )  = 0, 2, even integers, etc 

pZ = 2, 0, Z2,  etc 

.rrl(R)= m ( W Z  m(H)/O, m ( H ) / Z 2 ,  etc. 

(2.10) 

(2.1 1) 

(2.12) 

and correspondingly 

and 
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To see which of these possibilities is actually realised we look at PZ. In the present 
case, the embedding of the SI subgroup in H = SO(3) x SO(3) induces the mapping 
p : rl(Sl)+ r l ( H ) .  This latter group r l ( H )  = Z 2  + Z2,  since r1(SO(3)) = Z 2 .  Now 
consider the closed path in SO(3) X SO(3) traced by the elements ( R  '(a), R * (-  a)) of 
the SI subgroup as a covers the closed path 0 to 27r, n times. This is a representative 
of the element (n  mod 2, n mod 2) of 7rl(H),  so pn = (nmod 2, n mod 2 ) ~  Z2+Z2. 
Hence pZ=Z2 in this case, essentially because both of the rotations R'(a)  and 
R ' ( - a )  are embedded in an SO(3). Consequently, 

7r*(R) = cu.rrz(R) = even integers (2.13) 

and 

7Tl(R) = ( 2 2  + Z,)/Z, = z2. (2.14) 

Equation (2.14) leads to only two types of line singularities (including the trivial 
one). Examples are the uniform texture and the simple vortex line: 

1 1 
A = ~ - i  e"(f +if) ,  d = -JZ (i +if) .  (2.15) 

Two vortex lines can annihilate each other to produce the uniform texture. The 
straightforward 1 = 6 and 1 = c$ disgyrations, with d the uniform texture, are topolo- 
gically equivalent to the simple vortex line. 

Since r z ( R )  # 0, there exist true point singularities in small samples of superfluid 
A1 phase in small magnetic fields. Typical point singularities are given by 

f i ~ = c o s  e[COS(m4p+sin (m4)fl-sin e i + i [ - s i n ( m 4 p + c o s  (m4) f l  
and 

(2.16) 

J2d = cos e[cos ( n 4 ) i  +sin (n4)fI  -sin 8; + i[ -sin ( n 4 ) i  +cos (n4)fI  (2.17) 

with m and n integers. Not all such textures are true point singularities since some 
have a singular line on the z axis. A has a singularity of the form e-"' and d a 
singularity of the form e-'"' on the positive z axis so that the order parameter behaves 

. Clearly, if we choose m + n  = 0 the order parameter has no line 
singularity on either the positive or negative z axis. We must therefore restrict 
attention to n = -me In accordance with equations (2.7) and (2.13), these point 
singularities are classified by an integer p which can be identified with the number of 
times a closed surface is covered in order parameter space when a sphere in a real 
space is covered once. For the examples given p is m. The simplest example with 
p = 1 is not that obtained by setting m = -n  = 1 in equations (2.16) and (2.17), but 
rather 

&A= & + i d ,  &d=8*-i& (2.18) 

However, this is not a local minimum of the free energy and must relax into some 
more complicated texture with p = 1. 

An alternative way of thinking about the topological quantum number p is as 
follows. Equations (2.16) and (2.17) with n = - m  define an element of r z ( R )  
because they define a continuous mapping from a sphere in real space to a surface in 
R. They also define a continuous mapping from the (e, 4 )  plane (0 s 8 6 7r, 0 s 4 6 
27r) to SO(3) x SO(3) (though not from a sphere in real space to SO(3) x SO(3)). If we 

as e-i(m+n)d 
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consider the curve in SO(3) X SO(3) obtained by going round the boundary of the 
above region of the (e, 4 )  plane, we see that it is an element of rl(S1) with winding 
number 2m. (There is winding number m from the part of the path with 8 = 0 and also 
from the part with 0 = 7r. The sides at constant 4 cancel.) In this way, the element of 
7r2(R) defined by equations (2.16) and (2.17) with n = - m is mapped onto an element 
of r l (Sl) ,  This mapping CY is such that the element of 772(R) with p = m is mapped 
onto the element of 7rl(S1) with winding number 2m. Consequently a7r2(R) is the 
even integers, in agreement with equation (2.13). The procedure just described 
provides an alternative way of discovering the topological quantum number p of a 
given texture in T ~ ( R ) .  

Turning now to the case of large magnetic field, say along the z axis, the space of 
allowed order parameters becomes 

R = (SO(3) x Sl)/Si. (2.19) 

This is because A is allowed all orientations as before, but d must have P1 X P 2  along 
the z axis. The SI in the denominator is defined as following equation (2.4). The 
general arguments of equations (2.5) to (2.12) still apply but with H now equal to 
SO(3) X S1. In this case, only one of the rotations involved in defining the S1 in the 
denominator of equation (2.19) is now embedded in an SO(3). Thus the embedding 
induces the mapping of the element n E 2 = rl(S1) onto p n  = (n  mod 2 ,  n ) E  Z2+ 2 = 
rl(SO(3) X S1). Hence pZ = Z.  Consequently 

m ( R )  = 0 

Tl(R) = ( 2 2  + Z ) / Z  = z 2 .  

and 

(2.20) 

(2.21) 

Thus in large magnetic fields there are no true point singularities, and there are two 
types of line singularity, examples of which are the uniform texture and the simple 
vortex line given in (2.15). Two vortex lines can annihilate each other to produce a 
uniform texture. Disgyrations with I = 6 and I = $ are topologically equivalent to the 
simple vortex line. 

3. Topology of singularities in large volumes of superfluid 

When large volumes of superfluid are considered (dimensions >> cm) the orient- 
ing effect of dipoledipole interactions is important. This causes the vector I to lie at 
right angles to P1 x P 2 .  (See for example Leggett (1975)) 

Consider first the case of negligible magnetic field. Then, the most general allowed 
order parameter is obtained from the reference triads defined by 

(a19 a2, a1 x a21 = ($9  E, z*> 

(P1, P 2 ,  P1 x P2) = (E, z*, $1 
and 

by a rotation of a1 and a 2  about the t axis, a rotation of PI and P 2  about the x axis, 
and finally a simultaneous identical rotation of the two resultant triads about a general 
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and 

&A = RIR' ( y ) @  + ig), 

where R I  is the common rotation and R"(@), R ' ( y )  are the rotations about the x axis, 
z axis by p, y. Thus at first sight the space of order parameters is 

H={(R1RX(P),R1R'(y)):R1€ S 0 ( 3 ) , 0 S p ,  y < 2 ~ } .  ( 3 . l a )  

As before, this over counts because (e-iold,)(eiolAi)= d,Ai for any real cy. So in this 
case the manifold R of the order parameter AWi is a subset of the set of left cosets of 
the subgroup 

( 3 . l b )  

in S O ( 3 ) x  SO(3) .  Thus H is a sub-bundle of the principal bundle over the above SI 
group, and as before the homotopy groups T,(R) belong to an exact sequence of 
homomorphisms. They may therefore be calculated provided we know T,,(H). But 
we can show that H is homeomorphic to S O ( 3 ) x  S1 x S1. To see this consider the 
mapping 8 : S 0 ( 3 ) x S l x S 1 + H  such that 8(R1,p ,y )=(R1R"(p) ,RlR ' (y ) ) .  8 is 
bijective, since if R1Rx@)=RiR"(/3') and RIRZ(y )=RiR ' ( y ' )  then R ' ( y ' - y ) =  
R"(p ' -@),  which implies y '  = y, p' = p and R = R I .  Further, 8 and 8-' are plainly 
continuous, so 8 is a homeomorphism. 

So the general arguments of equations (2 .5 )  to (2 .12 )  can be applied with H equal 
to SO(3)  X S1 X SI. Since neither of the rotations involved in defining the denominator 
SI is embedded in an S 0 ( 3 ) ,  we have pZ = 2, with the result that 

s1= {(R"(cy),R'( - cy )):O s a c 2 7 )  

T ~ ( R )  0 (3 .2 )  

Tl(R) = ( 2 2  +z + Z ) / Z  = zz +z. (3 .3 )  

and 

There are thus no true point singularities and the line singularities are classified 
by a topological quantum number N ( Z z ) ,  which can take the values 0 and 1, and a 
topolQgica1 quantum number N ( Z ) ,  which can take all integral values. The former 
quantum number is associated with simultaneous rotations of the two reference triads 
about the same axis, and the latter quantum number is associated with the residual 
phase of the order parameter. Thus the order parameter given by 

&A = eim'[cos (n4P +sin (n4); + i f ]  

&ti = E +i[-sin ( n 4 ~  +cos ( n 4 ) i l  

is characterised by the pair (n  mod 2,  m ) ~  2 2  +Z. 
The examples of disgyrations in a small magnetic field given by Bailin and Love 

(1978,  equations (4.12)-(4.15)) both have the topological quantum numbers N(Z2) = 
1, N ( 2 )  = 1 .  Two such singularities can annihilate each other to produce the uniform 
texture. 

Now consider the case of strong magnetic field, say along the z axis. 
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The vector p1 X p2 is constrained to lie along the z axis, and 1 is constrained by the 
dipole-dipole interaction to lie perpendicular to p1 x p2 i.e. in the x - y  plane. Thus 

A d  = R'(p) ( f  + if), 

&A = R' ( S ) R x ( y ) ( f  + i i )  

using the previous notation. In this case, then, 

H = { ( R ' ( P ) , R ' ( S ) R X ( y ) ) : O s p , y , S < 2 . r r }  ( 3 . 4 ~ )  

is a sub-bundle of the principle bundle with group 

s 1  ={(R'(n),  R"(-cr) ) :Osn < 2 T }  (3.46) 

and H is homeomorphic to S1 x S1 x S1. 
Again, the arguments of § 2 can be applied with H equal to S1 x S1 x SI. Since 

neither of the rotations involved in defining the denominator S1 is embedded in an 
S0(3),  we must have PZ = Z, and the result is 

7r2(R) = 0 (3.5) 
and 

7rl(R) = (Z +z + Z ) / Z  = z +z. 
There are no true point singularities, and the line singularities are characterised by 
two integral quantum numbers associated with rotations of I about the z axis and the 
phase of the order parameter, respectively. Thus the order parameter given by 

& A =  -sin (n4) i+cos  ( n 4 ) j + i i  

A d  = e'"'($ + i f >  

is characterised by the pair (n ,  m ) e Z + Z .  The examples given by Bailin and Love 
(1978, equations (4.18) and (4.19)) both have topological quantum numbers (n,  m )  = 
(1,O). 

For completeness, we also comment on particle-like textures where the order 
parameter approaches the same uniform texture as we go to infinity in any direction. 
Such structures are classified by the homotopy group 7r3(R). (See Volovik and Mineev 
(1977a, b) and also Shankar (1977) and Finkelstein (1966)) 

In small magnetic fields, R is given by equation (3.1) and if we write R = H/S1 and 
consider the exact sequence 

'TT3(SI)+ 'TT3(H)-+m(R)+ 7 r 2 W  

i.e. 

o +  z + r3 (R)+  0 ,  

we see that r 3 ( R )  = 2. In  this case, particle-like textures exist. On the other hand, in 
large magnetic fields, R is given by equation (3.4) and the corresponding exact 
sequence is 

0 + 0 -+ ' T T ~ ( R )  + 0 

leading to 7r3(R) = 0 and no particle-like textures. (The corresponding results for 
volumes of superfluid small enough to neglect the dipolar forces are .rr3(SO(3)x 
so(3)/s1)= 2 + Z  and r3(SO(3) x S1 x S1/S1) = 2.) 
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4. Conclusions and discussion 

The topological discussion has shown that true point singularities in the A1 phase can 
only exist in small volumes of superfluid and then negligible magnetic fields are 
required. The experimental conditions for observing such textures may not be real- 
ised except in the metastable A1 phase produced by switching off the magnetic field. 
On the other hand a variety of line singularities exists in all conditions. 

As far as domain walls are concerned the situation in the A1 phase in large 
magnetic fields is topologically more similar to the B phase than the A phase, since 
domain walls in the AI phase are not ‘held up’ by any topological conservation law but 
only by a potential barrier. This is because r0((S1 x SI x S1)/SI) = 0. The detailed 
properties of domain walls in the AI phase will be presented in a forthcoming paper. 
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